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ABSTRACT

We present Relational Covariate Adjustment (RCA), a gen-
eral method for estimating causal effects in relational data.
Relational Covariate Adjustment is implemented through
two high-level operations: identification of an adjustment set
and relational regression adjustment. The former is achieved
through an extension of Pearl’s back-door criterion to rela-
tional domains. We demonstrate how this extended defini-
tion can be used to estimate causal effects in the presence
of network interference and confounding. RCA is agnostic
to functional form, and it can easily model both discrete
and continuous treatments as well as estimate the effects of
a wider array of network interventions than existing exper-
imental approaches. We show that RCA can yield robust
estimates of causal effects using common regression models
without extensive parameter tuning. Through a series of
simulation experiments on a variety of synthetic and real-
world network structures, we show that causal effects esti-
mated on observational data with RCA are nearly as accu-
rate as those estimated from well-designed network experi-
ments.

1. INTRODUCTION

Causal inference—estimating the effect of interventions—
is central to data-driven decision making. Increased atten-
tion has been paid to randomized experimentation (A/B
testing) as a method for causal inference [11, 3, 5, 6]. Re-
cent work has extended randomized experimentation to the
case of network interventions [27]. However, there are nu-
merous circumstances where performing an experiment may
be infeasible, expensive, or time-consuming.

Fortunately, a variety of methods have been devised for
inferring causal effects from observational data. Classical
methods for causal inference from observational data con-
sist of two steps. First, an adjustment set [22] is identified,
which consists of variables that are causally related to both
the prospective cause variable (termed a treatment) and the
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potential effect variable (termed an outcome). Second, a
procedure such as regression [21] or matching [24] is used
to estimate the direct effect of treatment on outcome, cor-
recting for the effects of the adjustment set. Extending this
classical framework of estimation to relational data requires:
(1) identifying adjustment sets in relational data, and (2)
adjusting for the full range of the effects of those variables.
Item 1 is primarily a structural question, and item 2 con-
cerns estimation.

As a motivating example, consider the problem of esti-
mating how a user-selected privacy setting influences the
time that users spend interacting with an online social net-
work. The privacy setting either requires users to explicitly
approve others’ posts to their page or it allows posting with-
out such an approval process. Site administrators may be in-
terested in changing the default privacy setting but want to
ensure that such a change would not adversely affect site us-
age. Randomized experimentation on privacy settings may
be controversial. Further, the propensity of users to share
their posts with their friends could be influenced by charac-
teristics of those friends. Figure 1 illustrates this example
by indicating an implied correlation between social disposi-
tion and use of the privacy setting as well as a correlation
between social disposition and time spent on site.

The task of adjusting for this confounding is particularly
challenging because some confounding variables can be prop-
erties of neighbors in the friendship network. In Figure 1, the
social disposition and privacy settings of Lucy, Sue, John,
and Fred could affect both the privacy settings of Carl and
the amount of time he spends on the site. The task of de-
ciding how to set privacy policy is an intrinsically causal
question because it requires reasoning about the effect that
intervening on the privacy setting would have on site us-
age. Additionally, modeling network effects is of central
importance—time on site is a function of the privacy set-
tings of an entire sub-network of friends rather than the
privacy setting of an individual.

In this paper, we present Relational Covariate Adjust-
ment (RCA), the first reliable method for inferring arbi-
trary causal effects in networks from observational data.
RCA uses a two-stage procedure. The first stage automati-
cally identifies the set of variables that must be adjusted for.
This stage uses relational d-separation [17], an extension of
d-separation [22] to relational data. The second stage per-
forms regression adjustment using relational non-parametric
estimators. This adjustment procedure makes limited as-
sumptions about the nature of the causal relationship be-
tween treatment and outcome. We provide theoretical guar-
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Figure 1: Social Network Privacy Example

antees showing that RCA produces a consistent estimate of
causal effect.

The rest of the paper is structured as follows. Section 2
provides background for causal effect estimation and rela-
tional d-separation. Sections 3 and 4 introduce Relational
Covariate Adjustment and discuss practical issues of imple-
mentation. Section 5 compares the estimates of RCA to es-
timates obtained via experimentation using multiple graph
structures with data simulated under multiple functional
forms, and shows that the performance of RCA can be com-
petitive with experimental results.

2. PROBLEM SETUP

We assume that we are given an undirected graph G =
(V,E). Let N = |V|, the number of vertices in the graph.
Let T be a random variable composed of the treatment
variables ¢; of each node ¢ in the network, so that T =
(t1,t2,...,tn). Let  be an assignment to 7', that is, w =
(m1,m2,...,TN), where 7; is an assignment to ¢;. The aver-
age causal effect (ACE) is defined as the expected difference
in outcome Y under treatment 7, contrasted with an alter-
nate treatment w’:

ACE(w,w') = E[Y|do(T = 7)] — E[Y|do(T = =")]. (1)

Throughout the paper, we use the do operator [22] to refer to
the interventional distribution, that is, the distribution that
would arise due to manipulation of T' rather than passive ob-
servation. Equation 1 may also be expressed in the potential
outcomes framework [25] by regarding Y as a node-specific
function of treatment. Ugander et al. [27] consider a special
case of equation 1 where w = T and ' = 0. Hudgens and
Halloran [9] refer to the above quantity as the population
average overall causal effect.

Expressed directly in equation 1 is the notion that the
outcome of subject i is a function of the entire treatment
assignment vector, not only m;. This distinction is critical
for estimating network effects, as we now have a language
to express interventions on multiple subjects. When deal-
ing with causal quantities as in equation 1, it is common
to assume that E[Y|do(T = =)] is invariant with respect
to treatment assignments to nodes which do not neighbor
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Figure 2: ER Diagram for Social Network Example
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1. Let Ty, denote the treatment variables of i’s neighbors,
and let wnp, = {m;|{i,7} € E} and 7}, be multisets repre-
senting assignments to Tys-,. The neighborhood invariance
assumption leads to the following reformulation of the aver-
age causal effect:

N
ACE 7\' 7T Z Y|d0 t; = 7T17Tnbu = 7Tnb7 )]

7E[Y|d0( i = 7('2, Tnbm = Tr:me)}' (2)

Equation 2 is consistent with the peer exposure models con-
sidered by Aronow et al. [2], Toulis and Kao [26], and the no-
tion of effective treatments considered by Manski [18]. These
causal quantities facilitate answering questions about inter-
ventional strategies including:

1. E[Y|do(t; =1, Tusr, = 1)] — E[Y|do(t; = 0, Ty, = 0)]:
How would individual i’s outcome change if ¢ and its
neighborhood were to be treated, as opposed to un-
treated? This quantity is the basis of ACE(T,0), the
quantity considered by Ugander et al. [27] and Gui et

al. [8].

2. E[Y|do(t; =1, Tnpr, = 0)] — E[Y|do(t; =0, Thpr, = 0)]:
How does subject i’s expected outcome change if i is
treated but no neighbors are treated? We might think
of this effect as an “insulated” individual effect.

3. E[Y|do(t; =0, Tnpr, = 1)] — E[Y|do(t; =0, Thsr, = 0)]:
How does subject i’s expected outcome change if i is
left untreated but all neighbors are treated?

By considering different settings of 7 and 7/, we can exam-
ine a large number of possible intervention strategies, with-
out being restricted to applying the same “type” of inter-
vention to each node in the network. In practice, no single
value of 7 could be used to apply interventions (2) and (3)
in the list above to all nodes in the network. However, we
can consider targeted interventions on specific individuals in
the network, so it is useful to consider these effects.

3. RELATIONAL ADJUSTMENT SETS

We now briefly introduce the relational concepts necessary
to describe Relational Covariate Adjustment, following the
notation and terminology of Maier et al. [17, 16].

3.1 Relational Causal Graphical Models

Let a relational schema S = (€, R, A, card) be the set of
entity, relationship, and attribute classes of a domain. It
includes a cardinality function that imposes constraints on
the number of times an entity instance can participate in a



relationship. Without loss of generality, we will focus our
presentation on the case of a simple network, where there is
a single entity, and a single many-to-many relationship, e.g.
a social network. Continuing the example of Figure 1:

& = {Users},
R = {Friend},
A = {time on site, disposition, privacy setting},

card(Connected) = Many.

Users are connected to potentially many other users, each
of which has a time on site, disposition, and privacy set-
ting attribute. Relational schemas are often visualized with
entity-relationship diagrams as in Figure 2.

A relational skeleton is a partial instantiation of a rela-
tional schema that specifies the set of entity and relation-
ship instances that exist in the domain. Using our online
social network example, this corresponds to specific users
and the friends that they connect to through the site. With
a given schema, a relational path can be defined, which is
a predicate that defines a path with respect to a schema.
In our example, relational paths correspond to friendship
paths, defined through the connectivity properties of the on-
line social network. We will refer to variables with a trivial
relational path (e.g., the immediate attributes of individu-
als), as propositional variables. Relational variables consist
of a relational path and an attribute that can be reached
through that path. For instance, the multiset of privacy set-
tings for friends adjacent to user ¢ is a relational variable.
Relational variables can have causal dependencies defined
between them, specified by a relational model M = (S, D).
This model consists of a collection of relational dependen-
cies (D) defined over a relational schema (S). The relational
model represents, as one example, the property that a user’s
time on site is affected by the privacy settings of adjacent
users. M also specifies a parametrized conditional distri-
bution of each relational variable given its parents. In the
context of this work, we do not have access to these distri-
butions and must estimate them from data.

To evaluate conditional independence queries on a model
M, we first construct an abstract ground graph (AGG) [17],
a lifted representation that admits the computation of d-
separation queries on multi-relational domains. Abstract
ground graphs are defined from a given perspective, spec-
ifying a base item of the analysis, and include nodes that
correspond to relational variables. In general, the construc-
tion of an AGG can involve creating auxiliary “intersec-
tion” variables. However, for the case of single-entity, single-
relationship networks (e.g. social networks or simple com-
munication networks) there exists a single AGG that can be
represented without the use of auxiliary variables. That is:

PROPOSITION 1. Given a model with a single entity sin-
gle, relationship schema, the complete set of d-separation
facts can be determined by considering only propositional
variables and relational variables.

The proof stems from a direct application of relational d-
separation and is presented in the Appendix. The conse-
quence of Proposition 1 is a relatively simple representa-
tion'. Within our running example there is a single per-
spective (person) and relational variables are defined with

IRelative to those required for multi-relational domains.

Notation | Meaning

U?.ToS | The value of variable ToS for instance
i of entity U. For instance, this could
represent the time on site of user i.

Ul.ToS | A multiset representing the value of

variable T'0S on instances related to in-
stance i of entity U through a path of
length 1. For instance, this could rep-
resent the time that friends of user 7
spend on the site. We can represent
users that are friends with 4’s friends
with the notation U?, and so on.

Table 1: Relational Notation

U?.Pru Ul Pry UY. Pro
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Figure 3: Abstract Ground Graph for the Social Network
Example. In this example, each user’s disposition (U°.D)
affects that user’s privacy settings (U°.Prv) and time on site
(U°.T0S). Further, the dispositions and privacy settings of a
user’s immediate peers (U'.D and U'.D, respectively) affect
that user’s time on site. A user’s privacy settings are also
influenced by their peers’ privacy settings. This structure
repeats for U?, representing friends of friends. Higher orders
of UP can be considered, but are not shown here.

respect to the relative distance to an individual (e.g. friends
and friends of friends). One plausible abstract ground graph
for this example is shown in Figure 3, in which the dispo-
sition and privacy settings of a person and her friends af-
fect her time spent on site. Note that in Figure 3 there
are two different types of variables present. Propositional
variables are those preceded by U°, and are measured on
a single instance. Relational variables are named as U°,
for ¢ > 0. These variables representing the values of a
person’s friends and the friends of her friends, respectively.
Given the AGG, conditional independence facts can be com-
puted directly using the same rules of d-separation used for
Bayesian networks. For instance, from Figure 3, we can
see that U2.Prv 1L U°.Prv|U". Prv, because U'.Prv blocks
all d-connecting pathways between the privacy settings of
friends of friends and a user’s time spent on site. These
d-separation properties are essential to identifying a suffi-
cient set of conditioning variables for a given causal query,
discussed in more detail in the following section.

3.2 Relational Backdoor Criterion

With a suitable representation in hand, we now turn to
the core aim of this work: identifying interventional distri-
butions. The approach taken here is to use an extension of
the back-door criterion [22] to relational domains:

DEFINITION 1. (Relational Back-Door Criterion) A set of
variables C satisfies the relational back-door criterion with



respect to variable sets (X1,X2) in an AGG G if:

1. No node in C is a descendant of any node in X1 in the
AGG (equivalently, no node in C is a post-treatment
variable); and

2. C blocks every back-door path between X1 and Xz in
the AGG

Note that here a back-door path refers to a path with an
arrow into a member of X ;. Definition 1 is a direct extension
to relational data of the back-door criterion presented by
Pearl [22]. In the case of a single entity with no relationships,
the definition reduces to the propositional case.

When such a set C can be identified, an estimate of the
interventional distribution can be obtained through a simple
application of the adjustment formula:

P(Xz\do(Xlzzz)):/P(Y|X1:x,C:c)dP(C:c) 3)

Then, average causal effects can be computed as follows:
ACE = E[Xz|do(X1 = )] — E[X2|do(X1 = 2")]  (4)

= /yP(X2|X1 =z,C=¢)dP(C =¢)
— /yP(Xz\Xl =1z',C =c)dP(C = ¢), (5)

where P represent either a probability density or probabil-
ity mass function. Semantically, because relational variables
take on values that may be multisets, there is a notion of
exhangeability encoded in this estimation framework. Con-
sider once again the example of Figure 1. In this case, Sue
has three neighbors, John, Bob and Carl. Let Ug,..Prv rep-
resent the multiset of time on site values of these neighbors
(see Table 1). As presented, U, .Prv takes on the value
{On, On, Off}. Intervention on Carl or Bob’s privacy set-
ting would yield the interventional regime do(Ud,,.Prv =
{On, Off, Off}). As such, our interventional language is in-
variant with respect to the identities of the instances under
intervention, and focuses strictly on the variables measur-
able on those entities.

3.2.1 Connection to Network Experimentation

There is a close relationship between Relational Covariate
Adjustment and the adjustments performed for peer-effects
in the network experimentation literature (c.f., [2, 27, 8]).
Given this connection, we discuss this relationship for read-
ers familiar with network experimentation. Current work in
network experimentation are described within the potential-
outcomes framework and assume strong ignorability, i.e.,
that (1) the outcome is rendered independent of treatment
given treatment status and (2) that all instances have a
treatment probability, p € (0,1). Within non-network ex-
periments condition (1) is trivially satisfied via randomiza-
tion. However, even in the simple network setting there is
dependence between other treatments and an individual’s
outcome. Further, by virtue of network randomization de-
signs (i.e., [27, 8]), dependence is induced between the treat-
ment status of instances. This dependence is depicted in
Figure 4. The graphical view shows that simple use of Re-
lational Covariate Adjustment can be applied to adjust for
network bias, with U'.Prv constituting the adjustment set.
Thus, the estimator of Gui et al. [8] can be seen as a special
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Figure 4: An abstract ground graph representing the de-
pendence structure under network experiment. This struc-
ture is similar to 3, except that disposition no longer influ-
ences privacy settings, and is excluded from the diagram. A
variable D representing the experimental design may induce
marginal dependence between treatments. It is possible that
the outcome of peers (U'.T0S) affects U°.T0S, but includ-
ing U'.Prv in a conditioning set is sufficient to satisfy the
back-door criterion for treatment U°.Pro.

case of Relational Covariate Adjustment, with an assumed
dependence structure of Figure 4 and adjustment performed
with a linear model. However, in contrast to current net-
work experimentation estimation methods, Relational Co-
variate Adjustment can be applied easily to observational
data with multi-valued and continuous treatments and an
arbitrary number of confounders without modification.

4. EMPIRICAL ESTIMATION

We now discuss how to practically estimate the effects
of interventions in relational domains. In contrast to the
non-relational setting, computing the adjustment formula
in equation 5 is not straightforward because the hypotheti-
cal values of X; could be multisets. We present a strategy
for conditioning on multisets that does not make strong as-
sumptions about functional form. Algorithm 1 presents the
procedure. Step 1 identifies the adjustment set by using re-
lational d-seperation to find the necessary set of variables C
to block all back-door paths between T' and Y.

The causal effect is then estimated as

E[Y|do(T = t)]

/ yP(Y =y|T =t,C = ¢)dP(C = ¢)
C
(6)

yPY =y|T=t,C=c¢;) (7)

2
2=

s
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ElY|T =t,C = cil, (8)
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-

where equation 7 is a Monte-Carlo approximation to the
integral. E[Y|T = t,C = ¢;] can be estimated from a re-
gression of y on features 7" and C.

4.1 Calculating Network Effects

Algorithm 1 can be applied to estimate a variety of causal
effects derived from the definition presented in equation 2.
In what follows, U°.T refers to a subject’s treatment and
U'.T refers to the treatments of immediate neighbors.



Algorithm 1: RelationalAdjustment

Input: Relational model M, outcome Y, treatment(s)
X
Output: h(z) = SN | E[Y|do(X = z)]
1 Use relational d-separation to identify adjustment set C
for causal effect of X on Y

2 Estimate E[Y|X, C] via regression or classification
3 h(z) =N, E[Y|X =2,C =c|
4 return h(x)

Marginal Individual Effect
h = RelationalAdjustment(M,U".Y,U°.T)
h(1)—h(0) = E[U°.Y |do(U°.T=1)]
— E[U°.Y|do(U°.T=0)] 9)

This effect represents the expected change in an arbitrary
subject’s outcome, U°.Y, when considering two alternate
settings of that subject’s treatment, U°.T (1 and 0). The
function A represents the expected outcome when applying
a hypothetical intervention to U°.T', conditioning on C. Ad-
ditionally, the treatment assignment of peers, U'.T, can in-
fluence both U°.T and U°.Y, which requires including peer
treatment values in the set of confounders, i.e, U'.T € C.

Marginal Peer Effect
h = RelationalAdjustment(M,Y,U".T)
h(6)—h(0') = E[U.Y |do(U".T=6)]
— E[U°.Y|do(U°.T=6") (10)

The above case concerns the causal effect of settings of the
treatment assignments of peers, U'.T. 6 and 6’ are mul-
tisets consisting of the treatment values of neighbors. For
instance, in the context of Figure 1, fsue = {On, On, Off}.
We could consider altering the treatment of Sue’s neighbor-
hood to fg,, = {Off, Off, On}. The effect of the intervention
is given by h(fsue) — h(05y.). This formulation facilitates
the estimation of arbitrary treatment settings of a node’s
neighborhood.

Total Effect
h = RelationalAdjustment (M, Y, ., Ul.T))
h(1,1) — h(0,0) = E[U°.Y|do(U°. T=1,U". T=1)]
— E[U°.Y|do(U°.T=0,U"T=0)] (11)

This effect represents an intervention on both U°.T and
U'.T. The adjustment procedure is valid for simultaneous
interventions on these variables because the back-door cri-
terion (Definition 1) applies to sets of variables. Now, h is
a function of two variables, the hypothetical intervention to
U°.T and the hypothetical intervention to U'.T. The first
argument to h is, in the case of binary treatments, 0 or 1.
The second argument to h is a multiset. This class of effects
is most applicable to estimation of applying an intervention
to all individuals on a network, e.g., a site-wide feature roll-
out.

4.2 Summarizing Relational Features

When any term in the adjustment equation is a relational
variable, E[Y|T,C] cannot be directly estimated using re-
gression or classification estimators designed for independent
and identically distributed data because relational variables’
instances consist of multisets rather than single observations.
A common approach to address this is to create aggregations
to succinctly represent the sets with a small number of real-
valued features. There is a long history in statistical rela-
tional learning of using user-specified aggregation functions
to model the distribution of a relational variable [12, 23].
While these approaches have yielded impressive results for
the task of prediction, causal inference requires stronger
guarantees about what is being captured by the aggrega-
tion functions. The aggregation function should be a suffi-
cient statistic of the underlying distribution of the variable,
rendering model parameters independent of the data. For
instance, specifying the mean aggregation would be sufficient
if the values of a relational variable are Poisson distributed,
and in the case of a normal distribution, the variance ag-
gregation must also be present. When sufficient statistics
are employed, then we can be confident that all relevant as-
pects of the distribution of a set have been accounted for
when marginalizing to compute the interventional distribu-
tion. When assumptions can be made about the marginal
distribution of relational variables, a set of features can be
constructed for regression by taking the sufficient statistics
for each instance of a relational variable. Once this set is
constructed, any consistent regression or classification model
can be used to estimate E[Y|T, C]. In the absence of known
sufficient statistics, estimates of a number of the moments
of a distribution can be used as an approximate solution.
We assume that the sufficient statistics S, of the true dis-
tribution can be described as a function of its k-th order
moments:

Sy = F(Mi(X), ..., Mi(X))

where My (X) = Zﬁjvxf ~ [ 2"p(z)dx is the empirical esti-
mate of the k-th moment of X. This implies the following
procedure: (1) for each relational variable generate a set of
k aggregates of the 1, ...,k moments of the set, (2) use this
new data set as the features to a non-linear regression or
classification model to estimate E[Y|T, C].

5. EXPERIMENTS

In this section we evaluate whether, and under which cir-
cumstances, Relational Covariate Adjustment can serve as
a feasible alternative to experimentation for causal infer-
ence. To that end, we constructed an evaluation suite to
compare RCA to state-of-the-art techniques for estimating
causal effects from experiments. We provided experimental
techniques with experimental data, and we provided RCA-
data with more challenging data sets in which relational con-
founding variables are present. We examined a variety of
real and synthetic networks, using simulated data with mul-
tiple functional relationships between treatment and out-
come.

5.1 Synthetic Data Generation

Data generation process was performed as follows:

1. Generate a random network



2. Sample treatment using one of two regimes:

(a) Exp: Sample treatment from an experimental con-
text, in which treatment is assigned using a graph
clustering technique

(b) Obs: Sample treatment as a function of confound-
ing variables and possibly treatments of neighbors
in the network

3. Sample outcome according to the treatment assigned
in step (2). In the Obs regime, outcome is a func-
tion of confounding variables and treatment. In the
Exp regime, outcome is a function of treatment assign-
ments.

In both the Obs regime and the Exp regime, the task is
identical: estimate the relationship between treatments (in-
dividual and those of peers) and outcomes. We compared
the performance of models learned from the observational
data to estimates obtained by experimentation?.

5.1.1 Synthetic networks

We considered two network structures in our synthetic
experiments: small-world networks and preferential attach-
ment networks. For small-world networks, each node has
degree (in4out) of 10 in the initial lattice. We varied the
rewiring probability in {0,0.01,0.1,0.15}. A rewiring prob-
ability of 0 results in a regular lattice, and a rewiring prob-
ability of 1 results in a random (Erd8s-Rényi) network. For
preferential attachment networks, we varied the power of
the attachment in {0.1,0.5,1}. In all cases, the synthetic
networks we consider have 1024 nodes.

Each network has a simple relational model consisting of
a single entity (U) and relationship (adjacency). Each in-
stance of U (i.e., a node in the network) has four attributes,
Ci, C2, T, and Y. We are interested in estimating the ef-
fects of UY.T (intrinsic treatment) and U'.T' (treatment of
peers) on U.Y (intrinsic outcome).

5.1.2 Treatment Models

In the Obs regime, propensity for treatment can be caused
by intrinsic covariates, covariates of peers, and treatments
of peers. To simulate data from that regime, we first con-
structed a confounding term L; which is a linear combination
of:

e U.C4 ° var(Ul.C’l)
e U%.Cy ° var(Ul.C'z)
e mean(U'.Cy) e mean(U'.Cy) * var(U'.C1)
e mean(U'.C») e mean(U'.Cy) * var(U'.Cy)

Then, treatment is sampled as a binomial random variable
with success probability that is a logistic function of L;. To
simulate influence between the treatments of subject i and
its neighbors, we use a Gibbs sampling technique inspired by
Manski [18]. After initially assigning treatment, we resam-
ple treatment with an additional parameter 6,5, s—1, the
proportion of ¢’s neighbors that are treated at the previous
iteration. This process is repeated until s = 3.

T;,0 ~ Binom (logistic (B L;: + €)) (12)
T;,s ~ Binom (logistic (B Li + Brbnbr;,s—1 + €)) (13)

Here, € ~ N(0,1). We vary the strength of the confound-
ing coefficient, [, from 0 to 3. We vary the strength of

2Code used to reproduce these experiments is available at
https://github.com/darbour/Relational Adjustment

dependence on peers’ treatments, Sr, from 0 to 10. When
Br = 2, we find that the distribution of peer treatment pro-
portions, Onpr,, is roughly uniform. When gr = 10, this
distribution is bi-modal with peaks at 0 and 1.

In the Exp regime, treatment was assigned randomly (with
probability 0.5) at the level of graph clusters rather than
individuals using a technique outlined by Ugander et al.
[27]. This clustering technique assigns treatment in such
a way that nodes are more likely to have completely treated
or completely untreated neighborhoods. In other words,
graph cluster randomization leads to bi-modal distributions
of Oy, with peaks at 0 and 1. This randomization tech-
nique is employed by experimental estimators to estimate
the total effect of equation 11.

5.1.3 Outcome Models

We explored the use of three distinct outcome forms. In
the first case, outcome is a linear function of individual treat-
ment, the proportion of treated peers, 6.4;,, confounding
variables L;, with noise that is distributed as a standard
normal. The general form of this function is shown below
in equation 14. The relationship between the 6,4;, and out-
come is shown in Figure 5b for a specific parameter setting.

Yi ~ B1Ti + BrOnsr; + BrLi + € (14)

We also considered non-linear functions of treatment and
covariates. The first of these is shown in equation 15, and is
a sigmoid function of T3, Oy, and L;. Figure 5a shows one
instance of this function class. This function is bounded in
the range (0,1). As 8; and 8p grow, the outcome approaches
1 more sharply.

Vi ~ (1 +exp (= (281 Ts + 2Bp0usr, + BrLi +¢€))) ™" (15)

The final outcome model we use is linear in T; and L;, but
depends on 0,;-; through a radial basis function about 0.5.
An instance of this function can be seen in Figure 5c. In
this case, the outcome peaks when 6,;,, = 0.5.

Y; ~ BiTi + exp (— (BpOnbr, — 0.5)) + BrLi +¢  (16)

In what follows, we refer to the functions outlined in equa-
tions 14, 15, and 16 as linear, sigmoid, and RBF, respec-
tively.

5.2 [Estimators

In practice, any consistent conditional estimator of
E[Y|T, 6y, C] will satisfy the requirements of the rela-
tional adjustment technique, provided C satisfies the rela-
tional back-door criterion. For our experiments, we used
gradient boosted trees (GBMs) to model this expectation,
where C consists of the means and variances of U'.C and
U'.Cs.

Gradient boosted trees [7] are a nonparametric ensemble
where each base learner is a low-depth decision tree. At
each iteration training samples are reweighted according to
their predictive error on the previous iteration. The boosting
procedure has been shown to be consistent [7], and provides
near state-of-the-art results on a variety of tasks.

We employed two experimental effect estimators within
the Exp regime, Horvitz-Thompson estimation [27] and a
linear additive model [8]. The Horvitz-Thompson estimator
can be written as a weighted sum of outcomes of nodes which
fall into two distinct exposure categories. We defined a node
1 as “exposed” if T; = 1 and Opnpr, > 0.75. We defined a node
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Figure 5: Examples of outcome models considered in this work, shown here as a function of the proportion of treated friends.
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Figure 6: Accuracy of experimental and observational effect estimates across various outcome models as confounding strength

is varied.

as “non-exposed” if T; = 0 and 6, < 0.25. Nodes which
do not fall into one of these categories are not used in the
estimation process.

1 = Yil (@b, > 0.75,T; = 1)
N i=1 P(enbri > 0757T1 = 1)

Yil(0npr, < 0.25,T; = 0)
P(Onpr; <0.25,T; =0)

The probabilities in the denominator are estimated using the
dynamic programming algorithm introduced by Ugander et
al. [27]. This method is useful primarily when the effect of
interest is the total effect and the distribution of 8., is
bimodal with peaks at 0 and 1. We refer to this estimation
strategy as ExpHT.

The linear additive model introduced by Gui et al. [8] fits
the conditional expectation E[Y|T, 6y, ], which is appropri-
ate when treatment is assigned experimentally and outcome
is a linear model. We refer to this model as ExpLM.

It is important to note that, for both ExpHT and ExpLM, the
results reported are with respect to a performed experiment.
This is contrast to the setting of Relational Covariate Ad-
justment, which is given access only to observational data,
without the benefit of randomization.

5.3 Findings

For each combination of parameter settings, spanning rewiring

probability, 8; (individual effect), Bp (peer effect), Bz (con-

founding strength), and Sr (treatment auto-correlation), we
performed 25 trials to assess variance. This resulted in
2269 x 25 = 56,725 datasets, some belonging to the experi-
mental regime (Exp) and some belonging to the observational
regime (Obs). Within the experimental regime, we estimated
total effect using ExpHT and ExpLM, the current state-of-the-
art techniques for effect estimation on networks. Within
the observational regime, we used the Relational Covariate
Adjustment procedure with gradient boosted trees. This is
referred to as ObsGBM in what follows. We also include re-
sults for an unadjusted GBM which does not include any
relational covariates. We refer to this model as ObsGBM-U.

Accuracy of the total causal effect estimates for the linear
outcome model are shown in Figure 7. Each box in this fig-
ure represents the distribution of performance values across
all network settings and model parameterizations. These
results indicate that the ExpLM model performs best in this
context, with ExpHT yielding slightly more bias and signif-
icantly more variance. However, in the observational case,
which is a more complex estimation task, the Relational
Covariate Adjustment implementation, ObsGBM is competi-
tive with the linear model in terms of bias, and yields only
slightly more variance than the HT estimator.

We also examined the performance of these models across
a variety of outcome functions. The error in total causal ef-
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Figure 7: Comparison of estimates obtained from retrospec-
tive, confounded, observational data (left) and those from
experimentation (right). An overestimated effect results in
positive error, and an underestimated effect results in neg-
ative error. These methods almost always overestimate the
true global effect.

Exp. LM
Linear  0.0869 (0.0752)
RBF  0.102 (0.0877)
Sigmoid  0.0178 (0.0158)

Obs. GLM

0.6527 (0.5936)
0.2342 (0.1687)
0.0269 (0.0157)

Table 2: Root mean squared error for marginal individual
effects. One standard error is shown in parentheses.

fect estimates are shown in Figure 6. This demonstrates two
dimensions of variability in our simulations. First, different
functional forms lead to more or less challenging estimation
tasks. Most significantly, as the strength of confounding
(Br) is increased from 1 to 3, the observational regime be-
comes more challenging. This matches intuition—in the ex-
treme, where 8, = 0, any confounding between treatment
and outcome disappears.

While the ExpHT model is specifically designed to esti-
mate only total effects, ExpLM and ObsGBM can also compute
marginal individual effects and marginal peer effects. We
computed the root mean squared error between estimated
individual effects and actual individual effects—this error is
shown in Table 2. ObsGBM is competitive with ExpLM primar-
ily for non-linear functional forms.

Finally, we examined the ability of the ExpLM and ObsGBM
to model marginal peer effects. Unlike the total effect and
the marginal individual effect, there is a spectrum of peer
effects induced by varying 6,-,. The possible functional
relationships between 6,5, and Y; are shown in Figure 5.
Figure 8 provides another concrete example of such a func-
tion along with the models estimated by ExpLM and ObsGBM.

Obs. GBM
0.6241 (0.485)
0.403 (0.264)
0.0391 (0.027)

Exp. LM
Linear 0.0535 (0.021)
RBF  0.4476 (0.248)
Sigmoid  0.0661 (0.015)

Table 3: Root mean squared error for marginal peer effects.
One standard error is shown in parentheses.

— Actual — ExpLM
Method — opsGaM

Figure 8: An example of the sigmoid outcome model. In
this case, a model of the marginal peer effect is estimated
from observational data using a boosted model and from
experimental data with a linear model, with f; = p = 5
and B = 1.
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Figure 9: Estimated Total Effects in the Enron Data

Table 3 shows the root mean squared error for peer effects
Onpr, € {0,0.1,...,0.9,1}. In the linear case, the ExpLM
model has an advantage over ObsGBM. However, the impor-
tance of modeling non-linearity becomes clear in the RBF
and sigmoid examples, for which the observational estimator
is superior to the experimental estimator.

5.4 Real Networks

To demonstrate the applicability of RCA to large net-
works for which the edge generation process is unknown, we
also compared the performance of 0bsGBM and ExpLM on the
Enron graph [14]. The nodes of the Enron network are in-
dividuals, with an edge between them if either of them have
sent an email to the other. The network is contains 36,692
nodes and 183,831 edges in total, with a clustering coefficient
of approximately 0.5 and diameter of 11. In the absence of
ground truth measures, we generated synthetic random vari-
ables following the procedure of Section 5.1, and use the real



ExpLM
Lincar  0.0399 (0.0279)
RBF 0.6242 (0.2571)
Sigmoid  0.3439 (0.2113)

ObsGBM

1.4038 (0.3772)
1.2883 (0.3778)
0.0561 (0.0101)

Table 4: Root mean squared error for marginal individual
effects in Enron data.

ExpLM 0bsGBM
Linear 0.0213 (0.007) 0.4855 (0.195)
RBF 0.5255 (0.148) 0.2278 (0.112)
Sigmoid 0.2703 (0.14) 0.0266 (0.025)

Table 5: Root mean squared error for marginal peer effects
in Enron data.

graph topology to test scalability and efficacy. The form of
the generative functions were identical to those used in the
observational setting. We then measured the estimates of
the total effect, marginal peer effects, marginal individual
effects for each method.

Figure 9 shows the quality of estimated total effects across
each outcome model. While the results from a synthesized
network experiment are superior to the estimates from 0b-
sGBM, the results are on comparable scales. Table 4 and Ta-
ble 5 show the error in estimated individual and peer effects,
respectively. Again, the results from 0bsGBM are similar to
ExpLM. ExpLM performs exceptionally well at experimental
data with a linear outcome. However, ObsGBM has a clear ad-
vantage in estimating marginal peer effects under the RBF
and Sigmoid models. We conjecture that the scale-free na-
ture of the Enron network leads to particularly favorable
circumstances for experimental approaches such as ExpLM.
Scale-free networks have many nodes with only one or two
neighbors, thus the probability that an entire neighborhood
will be completely treated or completely untreated is rela-
tively high.

6. RELATED WORK

Ugander et al. [27] and Gui et al. [8] present methods
which aim to measure the effect of placing the entire net-
work under treatment versus control. In both cases, this
is achieved by partitioning the graph into clusters, treat-
ing each cluster randomly and estimating the the average
causal effect after adjustment for peer confounding. Toulis
and Kao [26] consider experimental design and estimation to
measure average peer effect as a quantity of interest. In both
cases, the methods discussed within this paper can be seen
as complimentary work, providing interpretation within the
causal graphical models framework. This interpretation aids
the identification of threats to validity and provides a uni-
fied framework for estimation of a variety of causal effects.
Importantly, the causal graphical model view of this work
also admits inference in the non-experimental setting.

There have been numerous applications in recent year that
seek to measure causal effects in real relational domains.
Bakshy et al. [4] performed large scale experiments to under-
stand the effect of social cues on consumers’ receptiveness to
advertisements. Aral and Walker [1] used experimentation
to understand the process of social diffusion, or “virality” in
large-scale social systems.

Within the observational setting, researchers have applied

quasi-experimental designs (QEDs) to perform causal infer-
ence in relational data. QEDs exploit fortuitous circum-
stances in data that allow for the approximation of an ex-
perimental design post-hoc. For example, Oktay et al. [20]
apply QEDs to Stack Overflow, an online question and an-
swer site for programming, to understand the dynamics of
users’ behavior on the site. Krishnan and Sitaraman [13]
consider a quasi-experimental design to determine the rela-
tionship between network quality and user engagement with
online content. Kearns et al. [10] study patterns of network
formation by performing an experiment where subjects were
anonymously paired, and subsequently were asked to inter-
actively complete a graph-coloring video game.

Manski [18] considers the problem of identifiability in the
potential-outcomes framework in the presence of peer influ-
ence. Ogburn and VanderWheele [19] enumerate configu-
rations of causal graphs that result in bias from social ef-
fects on single entity, single relationship networks. Maier et
al. [17] considers the more general case of d-separation for
multi-relational domains. Maier et al. [15] apply the rules
implied by Maier et al. [17] to learn the causal structure of
relational domains, but explicitly do not consider inference
of individual causal effects.

7. CONCLUSION AND FUTURE WORK

We have described and evaluated Relational Covariate
Adjustment, an extension of nonparametric adjustment to
relational data. Through the use of nonparametric regres-
sion estimators, RCA allows for estimation of a wide range of
functional dependencies without modification. We showed
the efficacy of this approach to causal inference with a set
of experiments that examine Relational Covariate Adjust-
ment and other experimental adjustment methods over a
range of graph topologies.

This work represents one step toward a much larger goal of
general causal inference in relational domains. Toward that
end, we plan to extend RCA to the case of multiple entities
and relationships and to extend the calculus of interventions
by developing techniques that can estimate the effects of
interventions that add or remove nodes or edges from the
network.
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8. APPENDIX
8.1 Proof of Proposition 1

PRrROOF. In constructing a conditional independence query
with relational d-separation [15], paths composed of propo-
sitional variables, relational variables, and intersection vari-
ables must be considered. The set of propositional and rela-
tional variables to be considered for a perspective is directly
identifiable from the relational model. Intersection vari-
ables, as defined by Maier et al. [15], are required for sound
and complete reasoning of d-separation in relational domains
whenever there exists two paths, P, = [A,...,B],P, =
[A’,..., B’] that are not subsets of each other and whose
beginning and ending entity are the same, i.e., A = A’ and
B = B’. We consider the case of the single entity, single re-
lationship graph. Denote E to be the entity and R to be the
relationship. Without loss of generality, we consider paths
that begin at the entity. All possible path specifications
then must be of the form [A(BA)*], where * is the Kleene
star. It follows directly that any two path specifications
are either identical, or the shorter path is a sub-path of the
other. This implies that for single entity, single relationship
networks, intersection variables do not exist. [



